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Abstract

A theoretical explicit formulation for numerical simulation of the buckle propagation in deepwater pipelines is
proposed. It is based on thin shell theory incorporating large rotations and material elastic—plastic behavior for in-
finitesimal strains. The equilibrium equations are solved numerically through a computer program using the finite
difference method associated to the dynamic relaxation technique. The pipe post-buckling behavior is determined by the
arc-length method used in convolute regions of the load—displacement curve. The numerical results are correlated with
experimental data from small scale laboratory tests. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Buckle propagation; Submarine pipelines; Dynamic relaxation

1. Introduction

The buckle propagation in circular cylindrical shells under hydrostatic pressure is a post-buckling
phenomenon causing a progressive structural failure. The collapse once initiated at a particular cross
section of the cylindrical shell will propagate in both directions if the acting pressure is higher than a
minimum value defined as the propagation pressure.

The possibility of buckle propagation in deepwater pipelines associated with limited availability of re-
mote repair tools has contributed to conservative design approaches, based on the propagation pressure in
damaged pipes, instead of the collapse pressure in intact pipes. It means thickness of approximately 1.5 to 2
times the values needed to resist the collapse of intact pipes. Therefore, the accurate prediction of the
propagation pressure for deepwater pipelines contributes to less conservative design recommendations. It
allows the designer to introduce the proper safety factors through reliability techniques considering the
installation method and the risk involved.

The buckle propagation of pipelines was initially considered by Mesloh et al. (1973), but the first paper
on the subject with a proposed equation for the propagation pressure was originated from an indepen-
dent investigation by Palmer (1975) based on the strain energy of the collapsed cross-section. The results
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underestimated the experimental values for low ratios between external diameter and thickness (D/?),
typical of deepwater scenarios where the effects of plastic deformations are predominant.

The first experimental studies were performed by Johns et al. (1976) and Mesloh et al. (1976) who tested
different arrestors geometries used to stop the buckle propagation. Based on this study an empirical for-
mula was proposed (Mesloh et al., 1976) to evaluate the propagation pressure (P,) as a function of both D/t
ratio and material yield stress (o),
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Dynamic aspects of the propagation phenomenon were initially analyzed through experimental tests by
Kyriakides and Babcock (1979), who later developed an empirical formulation to evaluate the efficiency of
buckle arrestors (Kyriakides and Babcock, 1980a,b). An additional theoretical study (Kyriakides and

Babcock, 1981) generated an empirical equation for the propagation pressure of aluminum and steel tubes,
incorporating the material tangent modulus (E),
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A theoretical expression for the propagation pressure based on the internal energy dissipation of a
simplified ring model was proposed by Steel and Spence (1983). The ring section was modeled with the aid
of curved beam elements considering material strain hardening. Although they have presented good cor-
relation with some experimental results, in general the proposed expression overestimated the propagation

pressure,
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Kamalarasa and Calladine (1988) extended the Palmer approach to a three-dimensional model. A good
correlation with experimental results was achieved but the proposed method requires experimental tests for
the prediction of the propagation pressure.

Recently Estefen et al. (1996) carried out small scale experimental tests for deepwater pipelines in order
to check the accuracy of the existing formulations. Egs. (1) and (2) presented the best results.

Based on the analogy with the propagation phenomenon for inflated birthday balloons, Charter and
Hutchinson (1984) developed a theoretical study to determine the propagation pressure using the balance
between the dissipated energy and the deformation theory to describe the material plastic behavior. The
proposed method underestimated the propagation pressures obtained experimentally, although the results
were reasonable for D/¢ ratios higher than 30, due to the small effect of plasticity. In a contemporary and
correlated work Kyriakides et al. (1984) proposed an expression for the propagation pressure from a more
sophisticated numerical method. It was employed an incremental plasticity theory, but the bending strain
energy in the tube axial direction was neglected. Again the obtained theoretical values underestimated the
experimental results for D/¢ ratios less than 20.

Jensen (1988) conducted the first theoretical and numerical study for a three-dimensional solid to obtain
the propagation pressure. The shell theory simplified by the Love—Kirchhoff approach for small strains and
finite displacements associated with the material elastic—plastic flow theory was employed. Unfortunately
no correlation with experimental results was presented.

Tassoulas et al. (1990) and Song and Tassoulas (1991) carried out three-dimensional analyses using the
finite element method. Shell theory for finite displacements and strains associated with the flow theory with
isotropic strain-hardening was employed. The loading unstable region was controlled by volume increments
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and the external pressure was considered as an additional degree of freedom of the elements employed in
the analysis. Correlation studies were successfully performed for D/t ratios higher than 35.

Dyau and Kyriakides (1993) presented a numerical analysis using the Rayleigh—Ritz method. The tube
surface was modeled as thin shell, using the formulation proposed by Sanders (1963) for small strains and
large displacements. Material behavior was described by the flow theory associated with isotropic strain
hardening. Virtual work principle was used in an incremental form to obtain the system equilibrium in-
tegrals. The obtained results have shown good estimates for the propagation pressure as compared with
experimental data from aluminum and steel small scale models with D/¢ ratios between 18 and 38. Good
results were also obtained for the propagation pressure of tubes under tension loads (Kyriakides and
Chang, 1992). A conclusive study on the propagating phenomenon in structures was published by
Kyriakides (1994).

The buckle propagation problem has been modeled through implicit energy methods and analytical
formulations. This paper proposes a new approach based on an explicit formulation associated with an
innovative numerical solution technique for the equilibrium equations in the post-buckling regime. Con-
sidering that the thin shell theory has been employed the main aim is to obtain the propagation pressure for
D/t ratios higher than 16, which represents a reasonable lower bound of the geometries that could be
properly analyzed by this particular approach (Pasqualino, 1998).

2. Theoretical model

The theoretical model can be represented by a circular cylindrical shell with middle surface radius R,
constant thickness ¢ and length L. The shell geometry is defined by an orthogonal curvilinear coordinate
system where x, 0 and z correspond to axial, hoop and radial directions, respectively, as indicated in Fig. 1.
A local Cartesian coordinate system x, y and z is employed to obtain the linear displacements u, v and w at a
point P for instance, on the shell middle surface in the axial, hoop and radial directions, respectively.

The theoretical treatment of the propagation buckle of deepwater pipelines involves the consideration of
both membrane and bending strains at the cross-sections as well as longitudinal strains in the regions
between the pre- and post-buckling sections. Therefore, a three-dimensional model based on the thin shell
theory as proposed by Sanders (1963) was employed. This theory is quite general, comprises finite dis-
placements and finite strains within the Love—Kirchhoff assumptions.

The definition of the total strain and the general Sanders’ kinematic relations are presented in Appendix
A and B, respectively. The general thin shell equilibrium equations were modified to include the following
forces effects and are presented in Appendix C. Assuming small strains, the shell general expressions were

Fig. 1. Problem geometry.
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simplified and specialized to the circular cylindrical shell geometry in order to establish the problem for-
mulation.

2.1. Equilibrium equations

Five equilibrium equations deduced as described in Appendix C can be reduced to three, by substituting
the bending moment equations into the force equations through the transverse shear stresses. These
nonlinear equilibrium equations specialized to circular cylindrical shells subjected to a hydrostatic pressure
p are presented in a general compact form, where the coefficient index i assumes the symbols x, 6 and z
concerning to the components in axial, hoop and radial directions, respectively,

ON,, 1 ON,
CiiNyx + CioNyg + Ci3Nyg + CiaMy + CisMyg + CieMyg + Ci7 | —— +— X0
ox R 00
ONy 1 0Ny oM., 1 0My OM,y 1 OMyy
+C"*8(E+EW Tl TR )T o TR o0
M, 20M, 1 0*My
. el 2 _ )= 4
+C"”< o Raxd0 R o > 0 )
where
o%u v o*w
CiZger Mg S T
2 du 2/ % Ow 2/ 0w v
Coo=onl Cp== MY, Co== -~
2= Rrao0 TR (axae+ ax> 2= R (6x69 6x>

1 d%u 1 /% ow 1 /o*w ov 1
C‘x,3_ﬁﬁa COJ_E(@—’_ZQ_U)’ CZ’3_F<W_2@_W>_I_€’

Qup 1wy () ) 0Ke 1 0u Ky
o2 ™ TRox00 o 'RAO ox’

+6x
0% 1/ 0% ow v 0K, 1 /ov 0K,y
C""‘a_sz""JrTe(axaoJr&)K*”& ox T [”E(@”ﬂ ax

c o*w 1 < o*w 61)) ow 0K, 1 <6w >6Kx0
z4 ~_

e TR\ a0 ) T oy TR\ Y

1 & 1 o2 1 & 9 K, 10K,
Cs - (Kxx+K()0+R>+< u+ u>Kx0+<1+u)( . )

~ROxd0 R o2 ox )\ ox "R 00
1 % 0Kgp + 1 0K
RO\ ox "R 00 )

Cos =1 ﬂjta—w Kot Km+ ) + Fo L& L Nk
05 = r\axoo " ox )\ TR TR o R\ a0 V)M

+@ aKx0+laKxx + 1+l %+ aK()0+laKx()
ox\ ox R 00 A ox "R 30 )




L P. Pasqualino, S.F. Estefen | International Journal of Solids and Structures 38 (2001) 8481-8502 8485

Pw v 1 w1 [(Pw )
Cs= (@x@@ o )(KXX+K09+ )+|:a2+_2(@_2@_W—R):|Kx6
4 a_W GKxU T l 6Kxx 6[<()0 aKxU
ox\ ox R 00 ox R o0 )’

1 62u 1 1 62 1 aKx() 1 Ou aK()g
Cxﬁ_ﬁ@@"”ﬁ)ﬂ‘eaxao TR <1+6x) TR0 o0

1 (0 _ow (@ 1 v 0K,
C“-‘"ﬁ(@”ae )(K“‘”L) (a 0" ) Wt Rax 0
ov laKgg
[1+ <ae+ )}E %0
1 (@w _ov 1\ 1/&w ov 1owoKy 1 (0w 0Ky
Qﬁﬁ(&?‘zﬁ_w_R)@w+E>+E<mM_EJK”+Ea?a9+ﬁ<&fw>6?’

Ou ov ow
C <1+a ) C0<7_aa Cz,7_§a

1 Ou ov 1 /0w
Cx,S*E@v C, 1+ (60 ) Cz,8§<@v)a

Ou 10 ON,
Cx,9 = (1 + = )Kxx +— quU + —L

Ox R 00 ox ’

ov 1 /0ov ON,

Con =gkt |1 ()| T
ow 1 /ow ON;
Cx,9_a xx (ae_v)Kx(/Jf_axa

Coo_ 1+6u +lau Koo +l +laNl
o= o ) 50T R 50 R) TR0

Ov 1 /v 1 1 / ON,
Cﬁ«,lo *& Ko+ |:1 + = (ag ):| <K60+R) +(60+N3>

ow 1 /ow 1 1 /ON;
Cz,lo—a_xl(x(?‘f'l_i,(@_v)([(@&‘f'l_i,)+1—Q(W—N2>,

Ciin=N, Coin=N, C.11=Ns.

The tensor K, and the vector N; represent the bending strains and the normal unit vector to the deformed
middle surface, respectively (see Appendix B). The modified symmetric tensors in Eq. (4), N,; and M,
represent the membrane forces and bending moments, respectively. They are related to the contravariant
non symmetric resultant tensors °N*# and °AM*# through the following relations proposed by Sanders (1963):
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Not/f — ONocﬂ _ BffOwa (5)
and
1
M = 3 “MP 4 OMP. (6)

2.2. Constitutive relations

The membrane stress and bending moment resultants for small strains and finite rotations are given by
the integrals
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where 5f is the mixed tensor Kronecker delta, ¢* is the contravariant stress tensor, ¢ and « are the de-
terminants of the metric tensors g,s and a,s of the undeformed shell and shell middle surface, respectively.
Adapting Eqgs. (7) and (8) for cylindrical coordinates the integrals defining force and moment resultants per
unit length of the deformed shell middle surface can be obtained,
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2.3. Plasticity

In the material elastic—plastic regime the stress—strain relations are obtained from a theoretical model
incorporating the potential and associated flow law, small strains and the Von Mises yield criterion with
isotropic strain hardening.

Considering plane stresses and a scalar hardening law, the Von Mises yield function (f) is defined in this
case by the equation

f= \/6.%3( + ‘75(1 = OxcOgp + 303%0 — (H + ay), (17)

where 6 is the yield stress and H is a scalar function of the equivalent plastic strain &, representing the
increase of stress in relation to the undeformed material.

The relation between the stress (o) and the strain (g) tensors in the elastic—plastic regime is given by the
expressions

c=C,:é¢ (18)
and
_C:a®a:C
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(19)
where C, is the tangent modular matrix, the symbols (:) and (®) mean, respectively, inner and tensor
products and the dot (*) can be simply considered as small changes. The tensor C is the elastic matrix for
plane stress assuming isotropic elasticity. The tensor a is normal to yield surface and calculated from
a =0f/0c and h is the hardening parameter given by:
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3. Numerical method

The equilibrium equations are solved numerically using an iterative vectorial technique called dynamic
relaxation (Underwood, 1983) combined with the finite difference method. The dynamic relaxation tech-
nique transforms a static problem in a dynamic one by adding both fictitious densities and critical damping.
The use of the finite difference method avoids matrix operations and allows the vectorial arrangement of the
equation system contributing to save computer space memory and to simplify the numerical formulation. A
technique based on the arc-length method as proposed by Riks (1979) is employed to obtain the unstable
equilibrium configurations in the post-buckling regime.

3.1. Dynamic relaxation

The technique consists of obtaining the static solution from the transient response of a system excited
through a suddenly loading. The dynamic equilibrium equations corresponding to n degrees of freedom of
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the system are solved for a damping coefficient close to the critical one. After some initial oscillations both
velocities and accelerations tend to zero while the vector of displacements approaches to the deformed
equilibrium configuration. The method is normally used for the solution of problems with high nonlinear
geometry and material behavior, including ultimate strength analyses with structural unloading.

3.1.1. Finite difference mesh

Superimposed finite difference meshes (Fig. 2) are adopted in order to increase the accuracy of the first
order derivatives. The problem unknowns are calculated for specific meshes and then linearly interpolated
to the others if necessary. The main mesh is used to calculate the radial displacements w, the normal strains
components &, and &y, the normal forces N° and N, and the bending moments M and M},. The sec-
ondary mesh is used to calculate the shear strain component &, shear forces N, and Nj. and the shear
moments MY and Mj . The additional meshes define the nodes where the equilibrium equations for the
displacements u# and v are solved.

The proposed finite difference meshes are generated over 1/8 of the pipe surface, as presented in Fig. 3,
since the planes XY, XZ and YZ are assumed to be planes of symmetry. Mesh spacing in axial (Ax) and
hoop (A0) directions are constants and defined by the variables NMX and NMY, respectively. The pipe
structure is defined between the nodes / =2 and / = NMX2 in axial direction and the nodes J = 2 and
J = NMY2 in hoop direction. The fictitious nodes / = 1, NMX3 and J = 2, NMY?2 are used to define the
boundary conditions.

3.1.2. Method formulation
The dynamic relaxation technique is based on the time domain integration of the following equations
related to the kth time increment to obtain the discrete displacement vector ¢:

-1
- k+1/2 — (2 - CAt) - k—1/2 2M VkAt .
! ara? Tt M (21)
and
4 = ¢ + A )

where M is a mass diagonal matrix (n x n), r the residual vector, ¢ the damping coefficient and the dot (*)
means derivative in relation to the time ¢. The residual force vector is given by
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Fig. 2. Superimposed meshes.



L P. Pasqualino, S.F. Estefen | International Journal of Solids and Structures 38 (2001) 8481-8502 8489

C & -5 Fictitious nodes

Fig. 3. Finite difference mesh for the numerical model.

where Fj, is the internal force vector and P the external load vector. When the velocity vector ¢ approaches
zero the static equilibrium is then assumed,
Ff — P =0. (24)

int —

The parameters ¢, M and At must be chosen such as to obtain optimum performance and numerical sta-
bility. A damping coefficient close to the critical one can speed up the convergence that is obtained when
J

= 0.

3.1.3. Parameters ¢, Mand At

The procedure to obtain adequate convergence parameters was based on a detailed study developed by
Underwood (1983). The use of fictitious densities accelerates the convergence of the algorithm and guar-
antees its numerical stability. The time increment At is given by the inequality below:

2
At —, 25
Vi %)
where A, is the highest eigenvalue of the matrix A, defined by 4 = M 'K and K is the implicit rigidity
matrix of the finite difference method. Using the Gerschgorin theorem to establish the upper bound of the
highest eigenvalue, the lower bound of the fictitious densities (m;) can be defined as (Cassel and Hobbs,
1976),

1 n
i = AR k). 2
m;; 4 ¢ = |kj| ( 6)

Evaluating the diagonal matrix M with Az = 1.1 in Eq. (26) and iterating Eqgs. (21) and (22) with Ar=1.0 a
good margin to ensure stability is provided.

The damping coefficient ¢ is obtained every iteration through the following expression based on the
Rayleigh quotient,

c=+/q"'Kq/q" "My, (27)
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where the diagonal matrix 'K, known as the local rigidity matrix, has the elements calculated in each ite-
ration by
'K* = [-F- ' + FF

mt mt

1/ At (28)

3.1.4. Numerical procedure

The problem is solved incrementally with small load steps in order to update the geometry and material
properties. The kinematic, total strain, constitutive and equilibrium equations are used in the incremental
form and the partial derivatives are approximated with the aid of the finite difference expressions. In an
iterative process, the incremental equations are evaluated at each node of the finite difference meshes in
order to reach the convergence of the recursive equations (21) and (22) for the prescribed increment of
pressure (op).

Considering a degree of freedom i of the main mesh, for instance, Eqgs. (21) and (22) assume the par-
ticular form

G2 (2—cAt) .41 2rfiAt

! (24 cAtr) Wi m;(2 + cAt) (29)

and
SwhT = Swk W2 As, (30)

where the residual component ¥, corresponds to the equilibrium equation (4) in the z direction calculated
at the degree of freedom 7 and iteration .

The incremental stress—strain relations are needed to evaluate the constitutive equations in the elastic—
plastic regime. Since the Eq. (18) deals with infinitesimal changes of stress and strain, it is not appropriate to
be directly applied in a numerical procedure where finite increments of stress and strain must be related
to each other. It would lead to stress states out of the yield surface, which is theoretically inconsistent. To
overcome this problem a numerical procedure called “Backward Euler Return” (Crisfield, 1991), which
iteratively provides the return to the yield surface, was incorporated into the plasticity routine. It replaces
the tangent modular matrix by the consistent tangent modular matrix Cy., which is obtained iteratively and
leads to the following relation:

00 Ceti Ciez Cierz Oty
0000 | = | Gzt Cier Cie2s dego |- (31)
306 Cisi Cienz Ciazs 23¢xp

The yield function is verified at the end of each load step on main and secondary meshes at eleven points
along the thickness. The consistent matrix is evaluated where yield occurs, otherwise, the elastic matrix C is
considered. The Eq. (31) is substituted in the incremental constitutive equations and the coefficients of Cy.
are numerically integrated through the shell thickness.

3.2. Arc-length method

The arc-length method was first introduced by Riks (1970) and used by Wempner (1971) in order to
facilitate the incremental computations near limit points. Riks (1979) published one of the most repre-
sentative studies related to the method. Ramesh and Krishnamoorthy (1993) applied the method for the
first time in association with the dynamic relaxation technique to obtain the load—displacement history in
the post-buckling regime. A constrain condition based on the norm of the total displacements discrete
vector was employed. After being tested, the proposed condition showed to be inadequate to determine the
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post-buckling behavior of shells. The incremental solution procedure resulted in an oscillating response for
the unstable region of the equilibrium path.

In this paper the method is used to calculate the load increment (dp) that becomes an unknown in the
unstable region of the equilibrium path. It consists of the addition of a constrain condition to the n equi-
librium equations to obtain the solution of n + 1 unknowns, the n degrees of freedom and an incremental
load intensity factor 4. The circular constrain condition proposed by Crisfield (1981) was considered
adequate to be employed in the dynamic relaxation technique,

18" 1* + (84°1)* = 8%, (32)

where S means the arc-length.

Considering that the external loading is represented only by the variable p, which is the hydrostatic
pressure in the present case, the acting load is defined as a function of a constant reference value p,¢ given
by the expression

Pk = Ak+1prcf- (33)

Employing the incremental form of Eqgs. (21) and (22) in Eq. (32), the constrain condition is represented
with the aid of a second degree polynomial equation,

al(SAﬁjl)z + 026A1;j1 =+ ay = 0, (34)

where the coefficients are given as functions of the problem parameters. If the discriminant of Eq. (34) is
positive, two real roots (!84 and 284) will be obtained. In order to determine the correct root, new in-
cremental displacement vectors ('8¢ and 28¢4) must be calculated using the obtained roots, so that the cosine
of the angles formed between these vectors and the former solution can be estimated. The correct root
is that responsible for the smallest angle, i.e., the highest cosine value.

The use of the arc-length method to determine the load increments dp in the dynamic relaxation tech-
nique is relatively simple. The analysis is initiated with prescribed load increments according to the nu-
merical procedure presented in Section 3.1.4. Then the parameter S in Eq. (32) can be evaluated from the
known values of 8¢ and 64, determined from the last load step without the arc-length method control.
When it starts, the expression (34) is calculated at the end of the iterations to obtain the correct root, which
is employed in the incremental form of Eq. (33) to define the pressure increment to the next iteration. The
load step is concluded when convergence is reached for the dp value.

3.3. Loading control

Buckling analysis of circular cylindrical shells under external pressure must incorporate geometrical
imperfections, so that the tube cross-section can configure the characteristic failure mode. Here, the initial
displacements (wy) are made equal to

Wo = Wmax €08(26), (35)

where wy,.x 18 the maximum initial geometric imperfection, assumed as wy,x = R4y and 4, is the initial
cross-section ovalization which may vary along the pipe length.

The collapse must be localized at the pipe middle cross-section in order to simulate the buckle propa-
gation. This is accomplished by assuming a larger ovalization at the pipe middle cross-section and a
constant smaller one along the rest of the pipe length. The larger prescribed initial displacements of the
middle section will localize the buckle at this region at a pressure level called initiation collapse pressure (P,).
An initial estimative of P, may be obtained from a trial analysis of the buckling pressure with the mentioned
larger initial displacements made constant over the entire pipe.
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The quasi-static buckle propagation analyses may be divided in three phases and the related procedures
are presented hereafter.

3.3.1. Phase 1

The pressure increments are prescribed until 0.75P; so that the parameter S in Eq. (32) may be defined.
This stage represents the stable behavior of the structure where the increments converge quickly. Later, the
arc-length routine starts controlling the applied load by determining dp from the defined arc increments.
Considering the imperfection distribution adopted, the first yield occurs at the node located at the middle
cross-section and coordinate § = 0 (I = NMX2 and J = 2 according to Fig. 3). After the pipe collapse,
calculated negative values of dp reduce the overall applied external pressure.

3.3.2. Phase 2

This phase is related to the structure post-buckling behavior where the arc-length routine keeps calcu-
lating negative pressure increments. It is finished when the middle cross-section internal faces touch each
other. Due to the initial imperfection distribution adopted, the degrees of freedom w(NMX2, 2) registers
the first contact, being prescribed afterwards with the value — R + #/2.

3.3.3. Phase 3

As soon as the first nodes contact is registered, the arc-length routine starts calculating positive pressure
increments, raising the overall applied pressure to define a plateau that configures the propagation pressure.
The computational program is provided with a contact routine that verifies at each load step if any node
has reached the longitudinal symmetry plane. The nodes that register contact have their degrees of freedom
prescribed and are again excluded from the algorithm. The longitudinal line defined by the degrees of
freedom w(/,2), where I = 2,... NMX2, is a reference to control the model propagation process.

4. Correlation between numerical and experimental results

Results from numerical analyses and quasi-static buckle propagation tests are correlated in order to
verify the proposed methodology.

4.1. Laboratory tests

Six laboratory tests using small scale steel models with D/¢ ratios equal to 16, 21 and 24 were selected
from Estefen et al. (1996) for the correlation study on buckle propagation.

The models were made up with length to external diameter ratio (L/D) of 60, providing the length re-
quired for the propagating collapse configuration and end plug fittings. Table 1 provides the material
mechanical properties obtained through uniaxial tensile tests of specimens cut from the original tubes. To
initiate the buckle under external pressure, the models were damaged with the aid of a frame provided with

Table 1

Mechanical and geometrical properties for the small scale models
Model R (mm) ¢t (mm) oo (N/mm?) E, (N/mm?)
TSP16A 18.75 2.50 342.00 2550.78
TSP16B 18.75 2.50 295.20 1364.21
TSP21A 20.00 2.00 228.58 613.33
TSP21B 20.00 2.00 281.03 453.44
TSP24A 24.35 2.10 452.93 1004.06

TSP24B 24.35 2.10 326.51 697.68
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a hydraulic actuator. Depth damages were about 60% of the respective model external diameters to enforce
that initiation and propagation pressures would have similar values.

The test procedure consisted of gradual pressurization in the hyperbaric chamber until the model ini-
tiation collapse pressure, leading to a sudden drop of the chamber pressure to levels below the model
propagation pressure. Then, small pressure increments were applied in order to raise the chamber pressure
to a constant level in which the buckle propagated slowly, establishing a plateau for the model propagation
pressure.

4.2. Numerical analyses

Quasi-static buckle propagation analyses were simulated by the computer program using data from the
small scale models presented in Table 1. Numerical analyses were carried out in the computer system Cray
J90. The finite difference main mesh was generated with a half length equal to 12D, hoop and axial meshing
spacing equal to 6 and 45, respectively, adopting the symmetry conditions described in Section 3.1.1. The
axial mesh spacing is automatically set by the numerical program as equal to twice the hoop mesh spacing.

The mesh refinement was checked with the aid of a sensitivity analysis of buckling pressure for an intact
pipe. For this purpose it was employed a steel pipe model (D/t = 16; 4y = 0.00177; 6, = 280.8 N/mm?) with
experimental collapse pressure equal to 43.47 N/mm? (Estefen and Aguiar, 1994). Different mesh refine-
ments were examined with the hoop mesh spacing varying from 6 to 9, considering a model half length
equal to 7.5D. According to Table 2, the results of numerical collapse pressure P, presented reduced
sensitivity to the mesh refinements considered. Therefore, the hoop mesh spacing equal to six were used for
the buckle propagation analyses.

The propagation pressure was determined after the complete closure of twelve cross-sections along half
tube. The buckle propagation configuration for half tube is presented in Fig. 4, where it can be verified that

Table 2
Numerical collapse pressures for mesh refinement analyses
N° of axial divisions N° of hoop divisions P, (N/mm?)
28 6 42.09
33 7 42.10
38 8 42.12
43 9 42.14

Fig. 4. Configuration of the buckle propagation for half tube.
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the employed buckle localization procedure was very efficient. The cross-sections far from the tube middle
section were not affected by the external pressure. The behavior of the numerical models during buckle
propagation analyses is better understood with the aid of Figs. 5-10, which represent the load intensity
factor A versus the discrete displacement vector norm ¢ for six small scale models. All the phases of the
numerical process and the propagation pressure can be visualized through these curves. It can be verified
that the acting external pressure was incremented from zero to a maximum value corresponding to the
initiation collapse pressure. Later, negative incremental pressures were added until the tube internal faces
touch each other. In the last phase, the acting external pressure was increased up to the propagation
pressure plateau. Table 3 presents both experimental Pp and numerical P, results of the propagation
pressure models and the respective differences in relation to the experimental results. The numerical results
were graphically obtained from the plotted curves in Figs. 5-10 which also present the propagation pressure
plateau defined by the experimental tests.

1.0 T .
0.8 T

0.6} R

< A
P, =14.38 N/mm?

04+ Z 1
S

P,=14.14 Nmm?

0.2

0 40 g (mm) 80 120

Fig. 5. Load intensity factor versus displacement vector norm of model TSP16A.

1.0 . .
0.8 .
0.6+ .
< —
04} Py =11.95N/mm? — _
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0 40 80 120
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Fig. 6. Load intensity factor versus displacement vector norm of model TSP16B.
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Fig. 7. Load intensity factor versus displacement vector norm of model TSP21A.
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Fig. 8. Load intensity factor versus displacement vector norm of model TSP21B.
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The analyses showed good correlation between numerical and experimental results validating the theo-
retical model and the proposed numerical technique. Better numerical results could be probably obtained
if additional material properties data for the tested models were available. These results showed to be highly
dependent on the material stress—strain curves from uniaxial tensile tests. Discrepancies between numerical
and experimental results have not presented tendency to either underestimate or overestimate the propa-
gation pressure predictions. Good results were obtained through all analyzed D/¢ ratios, which demon-
strated that the theory considered is appropriate to lower bound D/ ratio equal to 16.

The mesh refinement and model length showed to be correctly defined to obtain the propagation
pressure plateau. If the model were too short, the constant pressure plateau would not be properly obtained
due to the boundary condition effect. The model length reserved to configure the buckle propagation, equal
to three times the respective diameter, was large enough to define the propagation pressure.
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Table 3
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Fig. 9. Load intensity factor versus displacement vector norm of model TSP24A.
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Fig. 10. Load intensity factor versus displacement vector norm of model TSP24B.

Experimental 15p and numerical P, results of propagation pressure in small scale models

Model B, (N/mm?) P, (N/mm?) Difference (%)
TSP16A 14.38 14.14 —1.67
TSP16B 11.72 11.95 1.96
TSP21A 5.01 4.37 —12.77
TSP21B 5.08 4.88 —-3.94
TSP24A 4.31 4.86 12.76
TSP24A 3.81 3.76 —1.31
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5. Concluding remarks

Theoretical and numerical procedures have been successfully proposed for the simulation of the buckle
propagation phenomenon in deepwater pipelines. A computer program based on both finite difference
method and dynamic relaxation technique has been implemented to solve the thin shell equations taking
into account geometrically nonlinear behavior and plasticity in the post-buckling regime.

Sanders’ thin shell equations were explicitly presented through ordinary notation using lines of curva-
tures for coordinates, which can be useful to solve problems related to general shell structures under fol-
lowing forces, finite displacements and small strains.

The solution procedure used in the post-buckling regime combined the explicit dynamic relaxation
technique to the arc-length method. It proved to be an useful numerical tool to solve structural problems
involving several nonlinearities. It can be easily vectorized using adequate computer languages, which
provides a fast and reliable approach to analyze post-buckling behavior of nonlinear structures.

Correlation between numerical and experimental results for small scale steel tubes presented good
agreement. Additional tests on full-scale pipes are recommended in order to provide additional results for a
conclusive correlation study and confidence for using the proposed software in the design of deepwater
pipelines.
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Appendix A. Definition of total strain

A natural definition of strain (e,4) at a shell generic point is given by the following expression:

1
eap = 5 (Gap = up) (A1)

where g,; and G, are the covariant metric tensors of the parallel surfaces for the undeformed and deformed
middle surface, respectively. They are defined through the expressions
& =8, 8 and Gy =G, Gy, (A.2)

where g, and G, are the base vectors of parallel surfaces to the undeformed and deformed middle surface,
respectively. With the aid of the Love—Kirchhoff hypothesis the following two expressions may be written

r=s+&a; and R=S+E4;, (A3)

where r is the position vector of a generic point P at the undeformed shell, s is the position vector of its
orthogonal projection on the undeformed middle surface, a; is the normal unit vector at P and & the
normal coordinate. The symbols R, S and A4; represent the analogous quantities related to the deformed
shell. Partial derivatives of Eq. (A.3) in relation to the middle surface curvilinear coordinate £* leads to

rog =398g + éSa_’mc and R,ox = SJ( + €3A3,oc- (A4)

With the aid of the definitions of base vectors and curvature tensors, Eq. (A.4) are rewritten as
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g, =a,+Cblag and G,=A,+ EB A, (A.5)

where a, and bf are, respectively, the base vectors and the curvature mixed tensor of the undeformed middle
surface, while 4, and Bf refer to the deformed middle surface. Therefore, the base vectors G, and g, may be
expressed as

8, = ,uga,; and Ga = MfA/;, (A6)
where
=08l +&p and MF =5+ EBE (A7)

From the equations above the total strain can be rewritten as,

1

L/ )
tp =5 (G- G+ g,-85) = 3 (MéMf}Aya - #;Mf;aﬁ)

{ [5;5;; + E5B,+ 5B+ (53)23;132]41 + [5;‘5; + &5+ ESbL + (53)217;'17;} a-,,;}

N — N — N

Lo »
(A = aup) + (Bop = big) & + 5 (4,8} — a7 (£)]
2

1, )
= Eyp+ Kl + 3 (A},/;B;;B;; - aw,b;bg) (&), (A.8)

where a,3 and 4,5 are respectively the metric tensors of the undeformed and deformed middle surface and
the natural definitions of the tensors £,; and K, were applied as follow

Aw,,a”ﬂ = 2E1~,a"ﬁ + 55 and bf = (Bw — Kw)a”'ﬂ . (A.9)
The fourth term of the last member in Eq. (A.8) can be rewritten as
a,blb; = ay, (B, — K.p)a” (B, — Kp)a
_ (A BB, — A;,BIKy, — A, BiK,, + Kx,]K,g,t)
= (2B50" + &) | (BB — (BiKp) | = (2Esa + 80)BiK,,
= 24,,a" E;,B,B}, + BiB}A,s — BiK,y — BiK,,
= 2E,,B.B} + B'B}A s — B'K.s — B}K s,
where the products of strains were neglected and the indexes of tensors components B,; were raised by the
metrics 4. Returning this term to Eq. (A.8) the following expression is obtained
1 N N
Eap = Eyp + Kyp& + 5, 1BLB), — 2E;,B.Bl, — A,;B.B} + BiK,; + B{K,,) (&)’
and finally,
1, . 2
eap = Eyp + Kyp& + 5 (BiKyp + ByKy, — 2E,;B}B}) ()", (A.10)

This equation was used by Koiter (1970) to represent virtual strains on parallel surfaces to the deformed
middle surface. It is applicable to general thin shells assuming finite displacements and small strains. The
use of Love—Kirchhoff assumptions in Eq. (A.1) resulted in an expression defined as a function of the
second order symmetric tensors £, and K, corresponding to the shell membrane and bending strains.
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In order to specialize the above equation to the geometry studied, the Greek symbols assume values 1
and 2 corresponding to the curvilinear coordinates x and 0 in a circular cylindrical shell. Thus, the com-
ponents of the total strain expressed in ordinary notation are obtained from Eq. (A.10) as:

EX.X = EXX +K’Cx27 (A.ll)
_ [ E(qg 22 Z\?2
&00 = _E99+K902+ (Kee —7) E}/(l +E) (A.12)
and
b0 = | Euo + Kz + Ko 2 (1+5) (A.13)
ox — | x0 x0Z x0 IR R . .

Appendix B. Kinematic relations

The general thin shell equations for membrane and bending strain components (Sanders, 1963) are
presented in ordinary notation assuming finite displacements, small strains and constant Lamé coefficients
Ay and 4,.

1
En=3 (A + 2+ - 1), (B.1)
1 ,
Ep= E(illﬂlz + Aot + 1), (B.2)
1 1 1 1 1 1
Ki=|—4 —— —( —2 — —— - B3
11 (Rl A1l A1#1,1> cosw (Al 11,1 +R1 #1>V1 4 21,1V2 R, (B.3)
and
1, 1 1 1, 1
K12 = (Eﬂzl _A_2u1’2> COoSw —14—2},]1'2\)1 — (A—z/ql_’z +R—2,u1>v2, (B4)
where
h= 14y, 4 (B.5)
1 = 4 I3 R w, :
1
A2 :A_zul’z’ (B.6)
1 1
Hy = A—IWJ - ITlul’ (B.7)
vi = (Aol — An ), (B.8)
COSw = (111),22 — /112121)7 (Bg)

R, and R, are the principal radii of curvature, u, and w are respectively, the tangential and normal dis-
placements of the middle surface and the comma means partial derivatives in relation to the curvilinear
coordinates £; and ¢,. Here and below in Appendix C the missing equations are obtained by interchanging
subscripts 1 and 2.
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The components of both membrane and bending strain tensors for circular cylindrical shells are obtained
from Egs. (B.1)-(B.9) as:

ou 1 u\’ v\’ ow\?

Egg;(22“1’W)+;<Ilegg>2+le2<gg+W>2+le2(?;gU)z, (B.11)

Bo=3[roi ot ravor e (o) Yoy (e 7)) @12

K. = —(%NI —‘r%Nz —i—aava;N;), (B.13)

Koy = —1% [%M + (%JFZZ—;V—U)NZJF (2%”—2%—W—R)N3 —&-R} (B.14)
and

Kxgz—]%[%Nl—&-(%ﬁ-g—j)Nz—f—(%—g)Ng}, (B.15)

where Ny, N, and Nj; are the local components of the unit vector normal to the deformed middle surface in
axial, hoop and radial directions, respectively,

1 0v [ Ow 1 0w [ Ov ow
Nlﬁ&(?e”)ﬁ&(@””)&’ (B.16)
1 Ou [ Ow 1 /0w 1 Ow Ou
Nz:‘ﬁ—ax(@‘l’)‘ﬁ(@‘”)*ﬁa@ (B.17
and
Oou 1 /0v 1 Ou [ Ov 1 Ov Ou
N3”aﬁze(ae*w)*mx(ae*w)‘mxae' (B.13)

Appendix C. Modified equilibrium equations

Sanders’ equations are based on dead-loading and are therefore inadequate for applications including
large rotations where the acting pressure remains normal to the deformed middle surface. In order to take
into account the following force type of loading it is necessary to use the components of the unit vector
normal to the deformed middle surface represented by Egs. (B.8) and (B.9). The external fluid pressure (p) is
multiplied by the local components v, v, and cosw, being added to the respective force equilibrium
equations to provide the following forces. Therefore, the equations for resultant forces and moments ap-
plicable to general thin shells assuming constant Lamé coefficients and small strains are:
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Ay (AnNn) |+ A41(AiNw) 5 + A2(212Ni2) § + A1 (AaNn) , + A2 (AnBuMi) | + A2(Z2BiaMn) |

+ A2 (AnBiaMiz) | + A2(L12BuMi) | + A1(AnBuMiz) 5 + A1 (A12B12Mia) 5, + A1 (A BiaMa) 5

A A A A A A
+ 41 (212BuMy) 5 + 22 (N A+ 1N1) Jr%(/th + ,B12) My JF%(:“]BU + 1,B2)Mi>
! ! !
A145
+A2(V1Q1>.1 +A1(V1Q2)‘2 + R— COS CUQ[ —A1A2V1p = 07 (Cl)
: : 1

Ay(Ni) g + A1 (Ni2) 5 + A2 (1oN12) | + A1 (1oNn) 5, + A2 (g BiiMiy) | + A2 (1,B12M0y )
+ A2 (pBiaMiz) | + Ax (1 BMiz) | + A1 (1BnMa) 5 + A1 (14 B1aMa) , + A1 (11:B12M12) ,

A4,

+ A1 (i BuMn) , — R (AN + A2Nn2) + (AnBuMyy + AnBiaMia + ApBiaMiy + 22BynMh))
1
A4
— Il€ 2 [(22N22 + 221N12) + (A2BaoMoy + 2o BioMis + 701 B1aMoy + 221B1iMi»))]
2
A A A A
+A2(COS(DQ1)J +A1(COS&)Q2)72 — ]]e 2 V1Q1 — ]le 2 V2Q2 — A1A2 CoOswp = 0 (CZ)
1 2
and
AyMyyy + AiMay — 414201 = 0, (C.3)
where
By =Ku+1/R, (C4)
and
B = Kps. (C5)

Both stress and bending moment resultants are the modified tensors of Egs. (5) and (6) while Q, is the
transverse shear resultant.
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